Neurodevelopmental Damage?
Recent studies show that young children can be exposed to pesticides during normal oral exploration of their environment and their level of dermal contact with floors and other surfaces. Children living in agricultural areas may be exposed to higher pesticide levels than other children because of pesticides tracked into their homes by household members, by pesticide drift, by breast milk from their farm worker mother, or by playing in nearby fields. Nevertheless, few studies have assessed the extent of children's pesticide exposure, and no studies have examined whether there are adverse health effects of chronic exposure. There is substantial toxicologic evidence that repeated low-level exposure to organophosphate (OP) pesticides may affect neurodevelopment and growth in developing animals. For example, animal studies have reported neurobehavorial effects such as impairment on maze performance, locomotion, and balance in neonates exposed (italic)in utero(/italic) and during early postnatal life. Possible mechanisms for these effects include inhibition of brain acetylcholinesterase, downregulation of muscarinic receptors, decreased brain DNA synthesis, and reduced brain weight in offspring. Research findings also suggest that it is biologically plausible that OP exposure may be related to respiratory disease in children through dysregulation of the autonomic nervous system. The University of California Berkeley Center for Children's Environmental Health Research is working to build a community-university partnership to study the environmental health of rural children. This Center for the Health Assessment of Mothers and Children of Salinas, or CHAMACOS in Monterey County, California, will assess (italic)in utero(/italic) and postnatal OP pesticide exposure and the relationship of exposure to neurodevelopment, growth, and symptoms of respiratory illness in children. The ultimate goal of the center is to translate research findings into a reduction of children's exposure to pesticides and other environmental agents, and thereby reduce the incidence of environmentally related disease. - B Eskenazi, A Bradman, and R Castorina, University of California
Breast Cancer?
Epidemiologic evidence on the relationship between chemical pesticides and cancer is reviewed. In animal studies, many pesticides are carcinogenic, (e.g., organochlorines, creosote, and sulfallate) while others (notably, the organochlorines DDT, chlordane, and lindane) are tumor promoters. Some contaminants in commercial pesticide formulations also may pose a carcinogenic risk. In humans, arsenic compounds and insecticides used occupationally have been classified as carcinogens by the International Agency for Research on Cancer. Human data, however, are limited by the small number of studies that evaluate individual pesticides. Epidemiologic studies, although some-times contradictory, have linked phenoxy acid herbicides or contaminants in them with soft tissue sarcoma (STS) and malignant lymphoma; organochlorine insecticides are linked with STS, non-Hodgkin's lymphoma (NHL), leukemia, and, less consistently, with cancers of the lung and breast; organophosphorous compounds are linked with NHL and leukemia; and triazine herbicides with ovarian cancer. Few, if any, of these associations can be considered established and causal. Hence, further epidemiologic studies are needed with detailed exposure assessment for individual pesticides, taking into consideration work practices, use of protective equipment, and other measures to reduce risk. - Jan Dich, Shelia Hoar Zahm, Annika Hanberg and Hans-Olov Adami, Cancer Causes & Controls
Prostate Cancer?
The authors examined the relation between 45 common agricultural pesticides and prostate cancer incidence in a prospective cohort study of 55,332 male pesticide applicators from Iowa and North Carolina with no prior history of prostate cancer. Data were collected by means of self-administered questionnaires completed at enrollment (1993–1997). Cancer incidence was determined through population-based cancer registries from enrollment through December 31, 1999. A prostate cancer standardized incidence ratio was computed for the cohort. Odds ratios were computed for individual pesticides and for pesticide use patterns identified by means of factor analysis. A prostate cancer standardized incidence ratio of 1.14 (95% confidence interval: 1.05, 1.24) was observed for the Agricultural Health Study cohort. Use of chlorinated pesticides among applicators over 50 years of age and methyl bromide use were significantly associated with prostate cancer risk. Several other pesticides showed a significantly increased risk of prostate cancer among study subjects with a family history of prostate cancer but not among those with no family history. Important family history-pesticide interactions were observed. - American Journal of Epidemiology
Parkinson's Disease?
In the last two decades reports from different countries emerged associating pesticide and herbicide use with Parkinson's disease (PD). California growers use approximately 250 million pounds of pesticides annually, about a quarter of all pesticides used in the US. We employed a proportional odds mortality design to compare all cases of PD recorded as underlying (1984–1994) or associated causes (1984–1993) of death occurring in California with all deaths from ischaemic heart disease (ICD-9 410– 414) during the same period. Based on pesticide use report data we classified California counties into several pesticide use categories. Agricultural census data allowed us to create measures of percentage of land per county treated with pesticides. Employing logistic regression models we estimated the effect of pesticide use controlling for age, gender, race, birthplace, year of deaths, and education. Mortality from PD as the underlying cause of death was higher in agricultural pesticide-use counties than in non-use counties. A dose response was observed for insecticide use per county land treated when using 1982 agricultural census data, but not for amounts of restricted pesticides used or length of residency in a country prior to death. Our data show an increased PD mortality in California counties using agricultural pesticides. Unless all of our measures of county pesticide use are surrogates for other risk factors more prevalent in pesticide use counties, it seems important to target this prevalent exposure in rural California in future studies that use improved case finding mechanisms and collect pesticide exposure data for individuals. - School of Public Health, UCLA
Endocrine Disruption?
Endocrine disrupting (ED) chemicals are compounds that alter the normal functioning of the endocrine system, potentially causing disease or deformity in organisms and their offspring. Pesticides are used widely to kill unwanted organisms in crops, public areas, homes and gardens and medicinally to kill parasites. Many are proven or suspected to be EDs. Ancient physiological similarities between different vertebrate groups suggest that disorders observed in wildlife may indicate risks to humans. This makes accurate risk assessment and effective legislation difficult. In this paper, the hazardous properties of pesticides which are known to have ED properties are reviewed in order to assess the implications for risk assessment. As well as data on sources of exposure in the United Kingdom (UK) an assessment of the evidence on the health effects of ED pesticides is also included. In total, 127 have been identified from the literature and their effects and modes of action are listed in this paper. Using the UK as a case study, the types and quantities of pesticides used, and their methods of application are assessed, along with their potential pathways to humans. In the UK reliable data are available only for agricultural use, so non-agricultural routes of pesticide exposure have been poorly quantified. The exposure of people resident in or visiting rural areas could also have been grossly under-estimated. Material links between ED pesticide use and specific illnesses or deformities are complicated by the multifactorial nature of disease, which can be affected by factors such as diet. Despite these difficulties, a large body of evidence has accumulated linking specific conditions to ED pesticides in wildlife and humans. A more precautionary approach to the use of ED pesticides, especially for non-essential purposes is proposed. - Centre for Environmental Policy, Imperial College London
No comments:
Post a Comment